Quasi-Poisson structures as Dirac structures

نویسندگان

  • Henrique Bursztyn
  • Marius Crainic
چکیده

We show that quasi-Poisson structures can be identified with Dirac structures in suitable Courant algebroids. This provides a geometric way to construct Lie algebroids associated with quasi-Poisson spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac Structures , Moment Maps and Quasi – Poisson Manifolds Henrique

We extend the correspondence between Poisson maps and actions of symplectic groupoids, which generalizes the one between momentum maps and hamiltonian actions, to the realm of Dirac geometry. As an example, we show how hamiltonian quasi-Poisson manifolds fit into this framework by constructing an “inversion” procedure relating quasi-Poisson bivectors to twisted Dirac structures. Dedicated to Al...

متن کامل

Dirac structures, moment maps and quasi-Poisson manifolds

We extend the correspondence between Poisson maps and actions of symplectic groupoids, which generalizes the one between momentum maps and hamiltonian actions, to the realm of Dirac geometry. As an example, we show how hamiltonian quasi-Poisson manifolds fit into this framework by constructing an “inversion” procedure relating quasi-Poisson bivectors to twisted Dirac structures. Dedicated to Al...

متن کامل

Dirac Geometry, Quasi–Poisson Actions and D/G–Valued Moment Maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

D/G-valued moment maps

We study Dirac structures associated with Manin pairs (d, g) and give a Dirac geometric approach to Hamiltonian spaces with D/G-valued moment maps, originally introduced by Alekseev and Kosmann-Schwarzbach [3] in terms of quasi-Poisson structures. We explain how these two distinct frameworks are related to each other, proving that they lead to isomorphic categories of Hamiltonian spaces. We str...

متن کامل

Gauge equivalence of Dirac structures and symplectic groupoids

We study gauge transformations of Dirac structures and the relationship between gauge and Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a symplectic groupoid is affected by a gauge transformation of the Poisson structure on its identity section, and prove that gauge-equivalent integrable Poisson structures are Morita equivalent. As an example, we study ce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004